Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Fluorophenyl)-1,4,5-triphenyl-1Himidazole

P. Gayathri,^a A. Thiruvalluvar,^a* N. Srinivasan,^b J. Jayabharathi^b and R. J. Butcher^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thaniavur 613 005, Tamilnadu, India, ^bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: thiruvalluvar.a@gmail.com

Received 26 August 2010; accepted 2 September 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.128; data-to-parameter ratio = 30.8.

In the title molecule, C₂₇H₁₉FN₂, the imidazole ring is essentially planar [maximum deviation = 0.004(1)Å] and makes dihedral angles of 62.80 (6), 36.98 (6), 33.16 (6) and $46.24 (6)^{\circ}$, respectively, with the substituent rings in the 1-, 2-, 4- and 5-positions. No classical hydrogen bonds are observed in the crystal structure.

Related literature

For the synthesis and pharmacological evaluation of substituted 1H-imidazoles, see: (Nagalakshmi, 2008). For contact allergy to imidazoles used as antimycotic agents, see: Dooms-Goossens et al. (1995). For related structures and applications of imidazole derivatives, see: Gayathri et al. (2010a,b,c).

Experimental

Crystal data C27H19FN2

 $M_r = 390.44$

```
Triclinic, P\overline{1}
a = 10.1794 (5) Å
b = 10.5239 (6) Å
c = 10.6175 (6) Å
\alpha = 80.750(5)^{\circ}
\beta = 85.776 (4)^{\circ}
\gamma = 67.348 (5)^{\circ}
```

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer Absorption correction: multi-scan (CrvsAlis PRO: Oxford Diffraction, 2010) $T_{\min} = 0.973, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 271 parameters $wR(F^2) = 0.128$ H-atom parameters constrained S = 0.86 $\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$ 8350 reflections

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

JJ is thankful to the Department of Science and Technology [No. SR/S1/IC-07/2007] and the University Grants Commission (F. No. 36-21/2008 (SR)) for providing funds for this research. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2707).

References

- Dooms-Goossens, A., Matura, M., Drieghe, J. & Degreeef, H. (1995). Contact Dermatitis, 33, 73-77
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gayathri, P., Jayabharathi, J., Saravanan, K., Thiruvalluvar, A. & Butcher, R. J. (2010a). Acta Cryst. E66, 01791.
- Gayathri, P., Jayabharathi, J., Srinivasan, N., Thiruvalluvar, A. & Butcher, R. J. (2010b). Acta Cryst. E66, 01703.
- Gayathri, P., Thiruvalluvar, A., Saravanan, K., Jayabharathi, J. & Butcher, R. J. (2010c). Acta Cryst. E66, o2219.
- Nagalakshmi, G. (2008). Eur. J. Chem. 5, 447-452.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

V = 1035.95 (11) Å³

 $0.51 \times 0.44 \times 0.15~\text{mm}$

15513 measured reflections

8350 independent reflections

3489 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.08 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.030$

7 - 2

Acta Cryst. (2010). E66, o2519 [doi:10.1107/S1600536810035464]

2-(4-Fluorophenyl)-1,4,5-triphenyl-1*H*-imidazole

P. Gayathri, A. Thiruvalluvar, N. Srinivasan, J. Jayabharathi and R. J. Butcher

Comment

Nagalakshmi (2008) has reported synthesis and pharmacological evaluation of 2-(4-Halo substituted phenyl)-4,5-diphenyl-1*H*-imidazoles, and Dooms-Goossens *et al.* (1995) have reported contact allergy to imidazoles used as antimycotic agents. As part of our research (Gayathri *et al.*, (2010*a*,*b*,*c*)), we have synthesized the title compound (I) and report its crystal structure here.

In (I), Fig. 1, the imidazole ring is essentially planar [maximum deviation = 0.004(1) Å for N1]. The imidazole ring makes dihedral angles of 62.80 (6), 36.98 (6), 33.16 (6) and 46.24 (6) ° with the phenyl (C11—C16) attached to N1, fluorophenyl (C21—C26) attached to C2, and two phenyl rings (C41—C46) & (C51—C56) attached to C4 and C5, respectively. The phenyl ring at N1 makes dihedral angles of 54.26 (6), 85.21 (7) and 65.02 (6) ° with the fluorophenyl at C2, and phenyl rings attached to C4 and C5, respectively. The fluorophenyl ring makes dihedral angles of 63.01 (6) and 78.99 (6) ° with the phenyl rings at C4 and C5, respectively. Finally, the dihedral angle between the phenyl rings at C4 and C5 is 51.10 (6) °. In the crystal structure no classical hydrogen bonds are observed.

Experimental

To benzil (3.15 g, 15 mmol) in ethanol (10 ml), aniline (1.5 g, 15 mmol), ammonium acetate (7 g, 15 mmol) and *p*-fluorobenzaldehyde (1.7 g, 15 mmol) were added over about 1 h while maintaining the temperature at 333 K. The reaction mixture was refluxed for 7 days and extracted with dichloromethane. The solid that separated was purified by column chromatography using hexane: ethyl acetate as the eluent. Yield: 3.51 g (60%).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}(\text{parent atom})$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

2-(4-Fluorophenyl)-1,4,5-triphenyl-1*H*-imidazole

Crystal data

C ₂₇ H ₁₉ FN ₂	Z = 2
$M_r = 390.44$	F(000) = 408
Triclinic, <i>P</i> T	$D_{\rm x} = 1.252 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 509 K
a = 10.1794 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.5239 (6) Å	Cell parameters from 3942 reflections
c = 10.6175 (6) Å	$\theta = 5.1 - 34.9^{\circ}$
$\alpha = 80.750 \ (5)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 85.776 \ (4)^{\circ}$	T = 295 K
$\gamma = 67.348 \ (5)^{\circ}$	Plate, colourless
$V = 1035.95 (11) \text{ Å}^3$	$0.51\times0.44\times0.15~mm$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini 8350 independent reflections diffractometer 3489 reflections with $I > 2\sigma(I)$ Radiation source: Enhance (Mo) X-ray Source $R_{\rm int} = 0.030$ graphite $\theta_{\text{max}} = 35.0^{\circ}, \ \theta_{\text{min}} = 5.1^{\circ}$ Detector resolution: 10.5081 pixels mm⁻¹ $h = -15 \rightarrow 12$ ω scans Absorption correction: multi-scan $k = -16 \rightarrow 14$ (CrysAlis PRO; Oxford Diffraction, 2010) $T_{\min} = 0.973, T_{\max} = 1.000$ $l = -17 \rightarrow 16$ 15513 measured reflections

Refinement

Ū į	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.128$	H-atom parameters constrained
<i>S</i> = 0.86	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0586P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
8350 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
271 parameters	$\Delta \rho_{\rm max} = 0.22 \ e \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$
F4	0.80372 (8)	0.08837 (10)	-0.40649 (7)	0.0903 (3)
N1	0.26200 (8)	0.23531 (9)	-0.01235 (8)	0.0437 (3)
N3	0.42488 (8)	0.27540 (10)	0.08546 (8)	0.0497 (3)
C2	0.39877 (10)	0.23282 (11)	-0.01679 (10)	0.0459 (3)
C4	0.30225 (10)	0.30605 (11)	0.15929 (9)	0.0455 (3)
C5	0.19960 (10)	0.28135 (11)	0.10135 (9)	0.0429 (3)
C11	0.20194 (9)	0.18684 (11)	-0.10385 (9)	0.0439 (3)
C12	0.16843 (11)	0.07116 (13)	-0.06763 (11)	0.0556 (4)
C13	0.11969 (13)	0.01955 (16)	-0.15797 (15)	0.0743 (5)
C14	0.10664 (14)	0.08323 (18)	-0.28296 (15)	0.0794 (6)
C15	0.14007 (13)	0.19852 (16)	-0.31824 (12)	0.0715 (5)
C16	0.18572 (11)	0.25319 (13)	-0.22810 (11)	0.0560 (4)
C21	0.50330 (10)	0.19099 (12)	-0.12073 (10)	0.0477 (3)
C22	0.51945 (10)	0.08114 (12)	-0.18562 (11)	0.0528 (4)
C23	0.62124 (11)	0.04652 (13)	-0.28141 (11)	0.0590 (4)
C24	0.70603 (12)	0.12091 (15)	-0.30998 (11)	0.0625 (4)
C25	0.69616 (13)	0.22763 (16)	-0.24730 (12)	0.0694 (5)
C26	0.59330 (12)	0.26275 (14)	-0.15231 (11)	0.0607 (4)
C41	0.30110 (11)	0.35537 (12)	0.28205 (10)	0.0468 (3)
C42	0.42822 (12)	0.30638 (14)	0.34878 (11)	0.0602 (4)
C43	0.43495 (14)	0.35356 (16)	0.46073 (12)	0.0713 (5)
C44	0.31579 (15)	0.44905 (16)	0.50961 (12)	0.0688 (5)
C45	0.19033 (14)	0.49726 (14)	0.44586 (12)	0.0654 (5)
C46	0.18239 (12)	0.45176 (12)	0.33263 (11)	0.0554 (4)
C51	0.05103 (10)	0.30008 (11)	0.13802 (10)	0.0438 (3)
C52	0.01739 (12)	0.25395 (13)	0.26117 (11)	0.0549 (4)
C53	-0.12281 (14)	0.27662 (14)	0.29629 (13)	0.0693 (5)
C54	-0.23054 (13)	0.34450 (15)	0.20932 (15)	0.0724 (5)
C55	-0.19831 (11)	0.38917 (14)	0.08727 (13)	0.0638 (4)
C56	-0.05946 (10)	0.36777 (12)	0.05109 (11)	0.0510 (4)
H12	0.17852	0.02828	0.01676	0.0667*
H13	0.09574	-0.05792	-0.13455	0.0892*
H14	0.07489	0.04771	-0.34393	0.0952*
H15	0.13200	0.24004	-0.40303	0.0857*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H16	0.20515	0.33333	-0.25085	0.0672*
H22	0.46150	0.03061	-0.16453	0.0633*
H23	0.63160	-0.02634	-0.32557	0.0708*
H25	0.75675	0.27545	-0.26776	0.0832*
H26	0.58432	0.33573	-0.10885	0.0728*
H42	0.50945	0.24100	0.31717	0.0722*
H43	0.52075	0.32058	0.50362	0.0856*
H44	0.32052	0.48059	0.58545	0.0825*
H45	0.10930	0.56144	0.47900	0.0785*
H46	0.09631	0.48633	0.29000	0.0664*
H52	0.08926	0.20754	0.32054	0.0659*
H53	-0.14438	0.24575	0.37930	0.0831*
H54	-0.32448	0.35981	0.23351	0.0868*
H55	-0.27068	0.43437	0.02817	0.0766*
H56	-0.03911	0.39881	-0.03226	0.0612*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F4	0.0761 (5)	0.1160 (7)	0.0732 (5)	-0.0356 (5)	0.0285 (4)	-0.0132 (5)
N1	0.0411 (4)	0.0500 (5)	0.0453 (5)	-0.0228 (4)	0.0001 (3)	-0.0076 (4)
N3	0.0443 (4)	0.0584 (6)	0.0520 (5)	-0.0254 (4)	-0.0013 (4)	-0.0083 (4)
C2	0.0411 (5)	0.0509 (7)	0.0499 (6)	-0.0229 (5)	0.0000 (4)	-0.0051 (5)
C4	0.0445 (5)	0.0491 (6)	0.0468 (6)	-0.0223 (5)	-0.0025 (4)	-0.0051 (5)
C5	0.0426 (5)	0.0447 (6)	0.0442 (5)	-0.0206 (4)	0.0001 (4)	-0.0046 (5)
C11	0.0387 (5)	0.0495 (6)	0.0472 (6)	-0.0196 (5)	0.0009 (4)	-0.0107 (5)
C12	0.0570 (6)	0.0552 (7)	0.0621 (7)	-0.0296 (6)	0.0038 (5)	-0.0103 (6)
C13	0.0762 (8)	0.0745 (9)	0.0928 (11)	-0.0446 (7)	0.0064 (7)	-0.0319 (8)
C14	0.0734 (8)	0.0955 (12)	0.0841 (10)	-0.0365 (8)	-0.0108 (7)	-0.0387 (9)
C15	0.0701 (8)	0.0869 (10)	0.0561 (8)	-0.0245 (8)	-0.0131 (6)	-0.0144 (7)
C16	0.0571 (6)	0.0572 (7)	0.0551 (7)	-0.0235 (6)	-0.0057 (5)	-0.0050 (5)
C21	0.0404 (5)	0.0545 (7)	0.0494 (6)	-0.0210 (5)	-0.0011 (4)	-0.0027 (5)
C22	0.0437 (5)	0.0523 (7)	0.0614 (7)	-0.0188 (5)	0.0039 (5)	-0.0062 (5)
C23	0.0524 (6)	0.0580 (8)	0.0604 (7)	-0.0144 (6)	0.0025 (5)	-0.0091 (6)
C24	0.0487 (6)	0.0770 (9)	0.0532 (7)	-0.0191 (6)	0.0092 (5)	-0.0017 (6)
C25	0.0587 (7)	0.0863 (10)	0.0723 (8)	-0.0427 (7)	0.0096 (6)	-0.0028 (7)
C26	0.0563 (6)	0.0712 (8)	0.0653 (7)	-0.0360 (6)	0.0062 (5)	-0.0127 (6)
C41	0.0512 (6)	0.0504 (6)	0.0466 (6)	-0.0287 (5)	-0.0033 (4)	-0.0032 (5)
C42	0.0540 (6)	0.0720 (9)	0.0595 (7)	-0.0282 (6)	-0.0073 (5)	-0.0093 (6)
C43	0.0750 (8)	0.0885 (10)	0.0608 (8)	-0.0413 (8)	-0.0212 (6)	-0.0043 (7)
C44	0.0920 (9)	0.0822 (10)	0.0509 (7)	-0.0515 (8)	-0.0007 (7)	-0.0146 (7)
C45	0.0749 (8)	0.0694 (9)	0.0625 (7)	-0.0356 (7)	0.0050 (6)	-0.0209 (6)
C46	0.0563 (6)	0.0572 (7)	0.0580 (7)	-0.0255 (6)	-0.0053 (5)	-0.0112 (6)
C51	0.0442 (5)	0.0435 (6)	0.0509 (6)	-0.0231 (5)	0.0041 (4)	-0.0125 (5)
C52	0.0611 (6)	0.0548 (7)	0.0552 (7)	-0.0291 (6)	0.0088 (5)	-0.0117 (5)
C53	0.0808 (9)	0.0690 (9)	0.0711 (8)	-0.0434 (7)	0.0320 (7)	-0.0235 (7)
C54	0.0520 (7)	0.0751 (9)	0.1043 (11)	-0.0360 (7)	0.0224 (7)	-0.0331 (8)
C55	0.0454 (6)	0.0611 (8)	0.0917 (9)	-0.0240 (6)	-0.0002 (6)	-0.0207 (7)

C56	0.0470 (6)	0.0503 (7)	0.0620 (7)	-0.0247 (5)	-0.0009 (5)	-0.0095 (5)
Geometric pa	rameters (Å, °)					
F4—C24		1.3626 (15)	C45—	-C46	1.38	22 (18)
N1—C2		1.3798 (14)	C51—	-C52	1.38	59 (16)
N1—C5		1.3905 (13)	C51—	-C56	1.39	60 (16)
N1-C11		1.4370 (13)	С52—	-C53	1.38	6 (2)
N3—C2		1.3194 (14)	С53—	-C54	1.37	8 (2)
N3—C4		1.3798 (14)	C54—	-C55	1.36	57 (2)
C2—C21		1.4718 (15)	C55—	-C56	1.37	79 (17)
C4—C5		1.3759 (15)	C12—	-H12	0.93	00
C4—C41		1.4761 (15)	C13—	-H13	0.93	00
C5—C51		1.4785 (16)	C14—	-H14	0.93	00
C11—C12		1.3771 (16)	C15—	-H15	0.93	00
C11—C16		1.3793 (15)	C16—	-H16	0.93	00
C12—C13		1.381 (2)	C22—	-H22	0.93	00
C13—C14		1.378 (2)	C23—	-H23	0.93	00
C14—C15		1.372 (2)	C25—	-H25	0.93	00
C15—C16		1.3825 (19)	C26—	-H26	0.93	00
C21—C22		1.3897 (16)	C42—	-H42	0.93	00
C21—C26		1.3887 (18)	C43—	-H43	0.93	00
C22—C23		1.3834 (17)	C44—	-H44	0.93	00
C23—C24		1.3621 (19)	C45—	-H45	0.93	00
C24—C25		1.363 (2)	C46—	-H46	0.93	00
C25—C26		1.3843 (19)	C52—	-H52	0.93	00
C41—C42		1.3950 (18)	C53—	-H53	0.93	00
C41—C46		1.3831 (17)	C54—	-H54	0.93	00
C42—C43		1.3755 (18)	C55—	-H55	0.93	00
C43—C44		1.374 (2)	C56—	-H56	0.93	00
C44—C45		1.365 (2)				
F4…H14 ⁱ		2.7400	C42…	H54 ⁱ	2.93	00
F4…H53 ⁿ		2.7400	C44…	H16 ^{V1}	2.98	00
N1…H22		2.9400	C45…	H25 ^{vii}	3.00	00
N1…H56		2.8800	C46…	H52	3.09	00
N3…H26		2.6800	C51…	H12	3.10	00
N3…H42		2.5900	C51…	H46	2.91	00
N3…H55 ⁱⁱⁱ		2.9400	C52…	H46	2.92	.00
C2···C22 ^{iv}		3.4772 (16)	C53…	H44 ^{viii}	2.98	00
C4…C23 ^{iv}		3.5258 (17)	C53…	H13 ^{ix}	3.01	00
C5…C56 ⁱⁱⁱ		3.5569 (16)	C54…	H13 ^{ix}	3.01	00
C5…C23 ^{iv}		3.5260 (16)	C54…	H44 ^{viii}	2.94	00
C11C56		3.1419 (16)	C56…	H56 ⁱⁱⁱ	2.97	00
C11C22		3.0928 (15)	H12…	C5	3.03	00
C12…C51		3.3300 (16)	H12…	C51	3.10	00
C12…C56		3.4599 (17)	H13…	C53 ^{ix}	3.01	00
C16…C21		3.2942 (17)	Н13…	C54 ^{ix}	3.01	00

C16…C22	3.2012 (17)	H14…F4 ^x	2.7400
C21…C16	3.2942 (17)	H16…C2	3.0700
C22…C11	3.0928 (15)	H16…C44 ^v	2.9800
C22····C2 ^{iv}	3.4772 (16)	H22…N1	2.9400
C22…C16	3.2012 (17)	H22…C11	2.6200
C23····C4 ^{iv}	3.5258 (17)	H22…C12	2.9700
C23····C5 ^{iv}	3.5260 (16)	H22…C16	2.9200
C41…C52	3.4747 (18)	H22····C2 ^{iv}	3.0100
C46…C51	3.4230 (16)	H23····C4 ^{iv}	3.0400
C46…C52	3.3345 (18)	H25····C45 ^{vii}	3.0000
C51…C46	3.4230 (16)	H26…N3	2.6800
C51C12	3.3300 (16)	H42…N3	2.5900
C52···C46	3.3345 (18)	H42…H54 ⁱ	2.5000
C52···C41	3.4747 (18)	H43····C24 ^{vi}	2.8400
C56…C11	3.1419 (16)	H44····C53 ^{viii}	2.9800
C56···C56 ⁱⁱⁱ	3.4379 (16)	H44····C54 ^{viii}	2.9400
C56···C5 ⁱⁱⁱ	3.5569 (16)	H46…C5	3.0200
C56…C12	3.4599 (17)	H46…C51	2.9100
C2···H22 ^{iv}	3.0100	H46…C52	2.9200
C2…H16	3.0700	Н52…С4	3.0500
C4···H55 ⁱⁱⁱ	3.0300	H52…C41	3.0800
C4…H23 ^{iv}	3.0400	H52…C46	3.0900
C4…H52	3.0500	H53…F4 ^{xi}	2.7400
C5…H46	3.0200	H54…C42 ^x	2.9300
C5…H12	3.0300	H54…H42 ^x	2.5000
С11…Н56	2.7600	H55····N3 ⁱⁱⁱ	2.9400
С11…Н22	2.6200	H55····C4 ⁱⁱⁱ	3.0300
C12…H22	2.9700	H56…N1	2.8800
C16…H22	2.9200	H56…C11	2.7600
С16…Н56	3.0900	H56…C16	3.0900
C24…H43 ^v	2.8400	H56···C56 ⁱⁱⁱ	2.9700
C41…H52	3.0800		
C2—N1—C5	107.30 (9)	C52—C53—C54	120.60 (13)
C2—N1—C11	125.41 (9)	C53—C54—C55	119.52 (13)
C5—N1—C11	127.07 (9)	C54—C55—C56	120.53 (12)
C2—N3—C4	106.26 (9)	C51—C56—C55	120.81 (11)
N1—C2—N3	110.82 (9)	C11—C12—H12	120.00
N1—C2—C21	125.85 (9)	С13—С12—Н12	120.00
N3—C2—C21	123.32 (10)	С12—С13—Н13	120.00
N3—C4—C5	110.51 (9)	C14—C13—H13	120.00
N3—C4—C41	118.29 (10)	C13—C14—H14	120.00
C5—C4—C41	131.20 (10)	C15—C14—H14	120.00
N1—C5—C4	105.11 (9)	C14—C15—H15	120.00
N1C5C51	122.73 (9)	C16—C15—H15	120.00

C4—C5—C51	132.12 (9)	C11—C16—H16	121.00
N1—C11—C12	119.53 (9)	C15—C16—H16	121.00
N1—C11—C16	119.13 (10)	С21—С22—Н22	120.00
C12-C11-C16	121.26 (10)	С23—С22—Н22	120.00
C11—C12—C13	119.27 (11)	С22—С23—Н23	121.00
C12-C13-C14	119.78 (14)	С24—С23—Н23	121.00
C13—C14—C15	120.59 (14)	C24—C25—H25	121.00
C14—C15—C16	120.18 (12)	С26—С25—Н25	121.00
C11—C16—C15	118.87 (12)	C21—C26—H26	119.00
C2—C21—C22	123.50 (10)	C25—C26—H26	119.00
C2—C21—C26	117.88 (10)	C41—C42—H42	120.00
C22—C21—C26	118.59 (10)	C43—C42—H42	120.00
C21—C22—C23	120.38 (11)	C42—C43—H43	120.00
C22—C23—C24	118.91 (12)	C44—C43—H43	120.00
F4—C24—C23	118.56 (12)	C43—C44—H44	120.00
F4—C24—C25	118.58 (12)	C45—C44—H44	120.00
C23—C24—C25	122.85 (12)	C44—C45—H45	120.00
C24—C25—C26	118.04 (13)	C46—C45—H45	120.00
C21—C26—C25	121.21 (12)	C41—C46—H46	120.00
C4—C41—C42	118.31 (11)	C45—C46—H46	120.00
C4—C41—C46	123.79 (11)	С51—С52—Н52	120.00
C42—C41—C46	117.86 (11)	С53—С52—Н52	120.00
C41—C42—C43	120.84 (13)	С52—С53—Н53	120.00
C42—C43—C44	120.44 (14)	С54—С53—Н53	120.00
C43—C44—C45	119.41 (13)	С53—С54—Н54	120.00
C44—C45—C46	120.75 (13)	С55—С54—Н54	120.00
C41—C46—C45	120.70 (12)	С54—С55—Н55	120.00
C5—C51—C52	120.62 (10)	С56—С55—Н55	120.00
C5—C51—C56	121.15 (9)	С51—С56—Н56	120.00
C52—C51—C56	118.21 (11)	С55—С56—Н56	120.00
C51—C52—C53	120.33 (12)		
C5—N1—C2—N3	-0.64 (12)	C16—C11—C12—C13	0.98 (18)
C5—N1—C2—C21	-179.79 (10)	N1-C11-C16-C15	174.19 (11)
C11—N1—C2—N3	-175.57 (9)	C12-C11-C16-C15	-2.50 (18)
C11—N1—C2—C21	5.28 (17)	C11-C12-C13-C14	0.7 (2)
C2—N1—C5—C4	0.72 (11)	C12—C13—C14—C15	-0.8 (2)
C2-N1-C5-C51	178.72 (10)	C13-C14-C15-C16	-0.8 (2)
C11—N1—C5—C4	175.54 (10)	C14-C15-C16-C11	2.4 (2)
C11—N1—C5—C51	-6.46 (16)	C2-C21-C22-C23	-179.20 (11)
C2-N1-C11-C12	112.68 (12)	C26—C21—C22—C23	-1.36 (17)
C2-N1-C11-C16	-64.07 (15)	C2-C21-C26-C25	178.74 (12)
C5—N1—C11—C12	-61.25 (15)	C22—C21—C26—C25	0.78 (18)
C5—N1—C11—C16	122.00 (12)	C21—C22—C23—C24	0.66 (18)
C4—N3—C2—N1	0.28 (12)	C22—C23—C24—F4	-178.45 (11)
C4—N3—C2—C21	179.46 (10)	C22—C23—C24—C25	0.7 (2)
C2—N3—C4—C5	0.20 (12)	F4—C24—C25—C26	177.87 (12)
C2—N3—C4—C41	179.33 (10)	C23—C24—C25—C26	-1.3 (2)
N1—C2—C21—C22	-38.85 (17)	C24—C25—C26—C21	0.5 (2)
N1—C2—C21—C26	143.30 (11)	C4—C41—C42—C43	177.03 (12)

N3—C2—C21—C22	142.10 (12)	C46—C41—C42—C43	-0.48 (19)
N3—C2—C21—C26	-35.75 (16)	C4—C41—C46—C45	-177.52 (12)
N3—C4—C5—N1	-0.57 (12)	C42—C41—C46—C45	-0.15 (18)
N3—C4—C5—C51	-178.31 (11)	C41—C42—C43—C44	0.7 (2)
C41—C4—C5—N1	-179.56 (11)	C42—C43—C44—C45	-0.2 (2)
C41—C4—C5—C51	2.7 (2)	C43—C44—C45—C46	-0.4 (2)
N3—C4—C41—C42	-31.76 (15)	C44—C45—C46—C41	0.6 (2)
N3—C4—C41—C46	145.60 (12)	C5—C51—C52—C53	177.49 (11)
C5—C4—C41—C42	147.16 (13)	C56-C51-C52-C53	-0.79 (18)
C5—C4—C41—C46	-35.48 (19)	C5-C51-C56-C55	-177.69 (11)
N1—C5—C51—C52	135.85 (11)	C52—C51—C56—C55	0.59 (17)
N1-C5-C51-C56	-45.92 (16)	C51—C52—C53—C54	0.4 (2)
C4—C5—C51—C52	-46.76 (18)	C52—C53—C54—C55	0.3 (2)
C4—C5—C51—C56	131.48 (13)	C53—C54—C55—C56	-0.5 (2)
N1-C11-C12-C13	-175.70 (11)	C54—C55—C56—C51	0.1 (2)
0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	1. (11) 11 . (1) (1 (2) 1 (3) (4)	1. (!!) + 1 + 1

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1, *y*, *z*-1; (iii) -*x*, -*y*+1, -*z*; (iv) -*x*+1, -*y*, -*z*; (v) *x*, *y*, *z*-1; (vi) *x*, *y*, *z*+1; (vii) -*x*+1, -*y*+1, -*z*; (viii) -*x*, -*y*+1, -*z*; (viii) -*x*, -*y*+1, -*z*; (viii) -*x*+1, -*y*+1, -*z*; (viii) -*x*

